Search results for "Sustainable Manufacturing"
showing 10 items of 24 documents
Analysis of Electrical Energy Demands in Friction Stir Welding of Aluminum Alloys
2017
Abstract Manufacturing processes, as used for discrete part manufacturing, are responsible for a substantial part of the environmental impact of products. Despite that, most of metalworking processes are still poorly documented in terms of environmental footprint. To be more specific, the scientific research has well covered conventional machining processes, concerning the other processes there is a lack of knowledge in terms of environmental load characterization instead. The present paper aims to contribute to fill this knowledge gap and an energetic analysis of Friction Stir welding (FSW) is presented. Following the CO2PE! methodological approach, power studies and a preliminary time stu…
Towards criteria for sustainable process selection: On the modelling of pure subtractive versus additive/subtractive integrated manufacturing approac…
2017
Additive Manufacturing (AM) processes can be counted among the disruptive technologies that are capable of transforming conventional manufacturing routes. The ability to create complex geometries, the reduction in material scraps during manufacturing, and the light-weighting due to the think-additive redesign of the components represent the main points of strength of AM. However, for some applications (such as the production of metal components for the automotive and aerospace industries), the surface finishing and dimensional/geometrical part tolerancing that can be achieved via AM processes might not be adequate to satisfy the imposed product specifications, and finish machining operation…
Manufacturing strategies for efficiency in energy and resources use: The role of metal shaping processes
2017
Abstract Manufacturing sector nowadays has to deal with the global need to reduce the environmental impact of human activity. As manufacturing accounts for a significant portion of the global CO 2 emissions, scientific research should be addressed to understand the environmental impact of manufacturing processes and, in the meantime, to take advantage of their full potential in reducing the overall CO 2 emissions. The present review paper aims at describing the role of metal shaping processes in reducing the environmental impact across different stages of metal components life. Actually, an increased consciousness concerning both the environmental performances of manufacturing processes and…
A methodology for evaluating the influence of batch size and part geometry on the environmental performance of machining and forming processes
2016
Metallic material processing plays a significant role in terms of global environmental impact. As a result, energy- and resource-efficient strategies in the metal shaping technology domain need to be identified urgently. Recently, the scientific world has been paying more and more attention to the environmental impact analysis of manufacturing processes. Despite this increased attention, the state of the art in the domain of environmental impact analysis of metal shaping processes is still characterized by gaps in knowledge and in methodologies. In particular, metal forming processes are still not well documented, in terms of their environmental impact, and there is a lack of systematic and…
On the impact of recycling strategies on energy demand and CO2 emissions when manufacturing Al-based components
2016
Abstract The industrial world is facing the challenge of reducing emissions by means of energy- and resource-efficient manufacturing strategies. In some cases, the exerted emissions and the energy demands related to conventional manufacturing processes are not as intensive as those required to extract and produce the raw materials of which the workpieces are made. Therefore, the consciousness of the impact of material usage and the eco-informed choice of the end-of-life scenarios are both needed in view of sustainable development. Aim of this paper is to offer a contribution to a better understanding of the environmental impact of forming and machining processes, for the production of Al-ba…
Industry 4.0 Technologies for Manufacturing Sustainability: A Systematic Review and Future Research Directions
2021
Recent developments in manufacturing processes and automation have led to the new industrial revolution termed “Industry 4.0”. Industry 4.0 can be considered as a broad domain which includes: data management, manufacturing competitiveness, production processes and efficiency. The term Industry 4.0 includes a variety of key enabling technologies i.e., cyber physical systems, Internet of Things, artificial intelligence, big data analytics and digital twins which can be considered as the major contributors to automated and digital manufacturing environments. Sustainability can be considered as the core of business strategy which is highlighted in the United Nations (UN) Sustainability 2030 age…
Trends in Metal Cutting Theory and Practice
2017
This chapter provides the state-of-the-art manufacturing systems that utilize various machining technologies in different manufacturing sectors. It highlights the challenges of the 21st-century manufacturing environment and characterizes numerous driven factors in modern machining technologies. They include more-established technologies, such as High-Speed Machining/Cutting, High-Performance Machining/Cutting, High-Efficiency Machining or currently developed ones, such as resource- and energy-efficient (generally sustainable) and hybrid machining. Practical examples and charts that document their importance in modern manufacturing are provided. Finally, some important future trends are over…
A comparative assessment of energy demand and life cycle costs for additive- and subtractive-based manufacturing approaches
2020
Abstract The applicability domain of Additive Manufacturing (AM) processes, apart from technological and quality results, relies on environmental and cost performance. These aspects still need to be better understood. To this aim, comparative analyses with conventional manufacturing routes are needed. In this paper, empirical cost and energy requirement models are suggested to assess subtractive- (machining) and additive- (Electron Beam Melting) based manufacturing approaches for the production of Ti-6Al-4V components. A life-cycle perspective is adopted, and all the steps from the input material production to the post-AM processing operations and the use phase are included. The analyses ha…
Friction stir extrusion to recycle aluminum alloys scraps: Energy efficiency characterization
2019
Abstract Solid state recycling refers to a group of processes allowing direct recycling of metals scraps into semi-finished product. Their main advantage lies in avoiding the molten state of the material which badly affects the environmental performance of the conventional (remelting based) recycling routes. It is expected that such process category would lower the environmental performance of metals recycling. In this paper, the friction stir extrusion process for aluminum alloy AA 2050 wire production is analyzed under the primary energy demand perspective. The process electrical energy demand is quantified with varying process parameters. An empirical modelling approach was applied and a…
Uncovering Technological and Environmental Potentials of Aluminum Alloy Scraps Recycling Through Friction Stir Consolidation
2020
Conventional metal chips recycling processes are energy-intensive with low efficiency and permanent material losses during re-melting. Solid state recycling allows direct recycling of metal scraps into semi-finished products. It is expected that this process category would lower the environmental performance of metals recycling. Friction Stir Consolidation is a new solid-state technique taking advantage of friction heat generation and severe plastic deformation to consolidate chips into billets. In this research, the feasibility of Friction Stir Consolidation as aluminum chips recycling process is analyzed. Specifically, an experimental campaign has been carried out with varying main proces…